
Quantum pattern matching fast on average

Ashley Montanaro

Department of Computer Science, University of Bristol, UK

12 January 2015

Pattern matching

In the traditional pattern matching problem, we seek to find a
pattern P : [m] → Σ within a text T : [n] → Σ.

T = Q U A N T U M P = A N T

We can generalise this to higher dimensions d, where
P : [m]d → Σ and T : [n]d → Σ:

T = P =

Pattern matching

In the traditional pattern matching problem, we seek to find a
pattern P : [m] → Σ within a text T : [n] → Σ.

T = Q U A N T U M P = A N T

We can generalise this to higher dimensions d, where
P : [m]d → Σ and T : [n]d → Σ:

T = P =

Pattern matching

In the traditional pattern matching problem, we seek to find a
pattern P : [m] → Σ within a text T : [n] → Σ.

T = Q U A N T U M P = A N T

We can generalise this to higher dimensions d, where
P : [m]d → Σ and T : [n]d → Σ:

T = P =

Pattern matching

Focusing on the 1-dimensional problem for now:

Classically, it is known that this problem can be solved in
worst-case time O(n + m) [Knuth, Morris and Pratt ’77].

There is a quantum algorithm which solves this problem
(with bounded failure probability) in time
Õ(

√
n +

√
m) [Ramesh and Vinay ’03].

Both these bounds are optimal in the worst case. But. . . what
about the average case?

Consider a simple model where each character of T is picked
uniformly at random from Σ, and either:

P is chosen to be an arbitrary substring of T; or
P is uniformly random.

Could this be easier?

Pattern matching

Focusing on the 1-dimensional problem for now:

Classically, it is known that this problem can be solved in
worst-case time O(n + m) [Knuth, Morris and Pratt ’77].
There is a quantum algorithm which solves this problem
(with bounded failure probability) in time
Õ(

√
n +

√
m) [Ramesh and Vinay ’03].

Both these bounds are optimal in the worst case. But. . . what
about the average case?

Consider a simple model where each character of T is picked
uniformly at random from Σ, and either:

P is chosen to be an arbitrary substring of T; or
P is uniformly random.

Could this be easier?

Pattern matching

Focusing on the 1-dimensional problem for now:

Classically, it is known that this problem can be solved in
worst-case time O(n + m) [Knuth, Morris and Pratt ’77].
There is a quantum algorithm which solves this problem
(with bounded failure probability) in time
Õ(

√
n +

√
m) [Ramesh and Vinay ’03].

Both these bounds are optimal in the worst case. But. . . what
about the average case?

Consider a simple model where each character of T is picked
uniformly at random from Σ, and either:

P is chosen to be an arbitrary substring of T; or
P is uniformly random.

Could this be easier?

Pattern matching

Focusing on the 1-dimensional problem for now:

Classically, it is known that this problem can be solved in
worst-case time O(n + m) [Knuth, Morris and Pratt ’77].
There is a quantum algorithm which solves this problem
(with bounded failure probability) in time
Õ(

√
n +

√
m) [Ramesh and Vinay ’03].

Both these bounds are optimal in the worst case. But. . . what
about the average case?

Consider a simple model where each character of T is picked
uniformly at random from Σ, and either:

P is chosen to be an arbitrary substring of T; or
P is uniformly random.

Could this be easier?

Pattern matching

Classically, one can solve the average-case problem in time
Õ(n/m +

√
n), and this is optimal.

But in the quantum setting, we have the following result:

Theorem (modulo minor technicalities)
Let T : [n] → Σ, P : [m] → Σ be picked as on the previous slide.
Then there is a quantum algorithm which runs in time

Õ(
√

n/m 2O(
√

log m))

and determines whether P matches T. If P does match T, the
algorithm also outputs the position at which the match occurs.
The algorithm fails with probability O(1/n), taken over both
the choice of T and P, and its internal randomness.

This is a super-polynomial speedup for large m.

Pattern matching

Classically, one can solve the average-case problem in time
Õ(n/m +

√
n), and this is optimal.

But in the quantum setting, we have the following result:

Theorem (modulo minor technicalities)
Let T : [n] → Σ, P : [m] → Σ be picked as on the previous slide.
Then there is a quantum algorithm which runs in time

Õ(
√

n/m 2O(
√

log m))

and determines whether P matches T.

If P does match T, the
algorithm also outputs the position at which the match occurs.
The algorithm fails with probability O(1/n), taken over both
the choice of T and P, and its internal randomness.

This is a super-polynomial speedup for large m.

Pattern matching

Classically, one can solve the average-case problem in time
Õ(n/m +

√
n), and this is optimal.

But in the quantum setting, we have the following result:

Theorem (modulo minor technicalities)
Let T : [n] → Σ, P : [m] → Σ be picked as on the previous slide.
Then there is a quantum algorithm which runs in time

Õ(
√

n/m 2O(
√

log m))

and determines whether P matches T. If P does match T, the
algorithm also outputs the position at which the match occurs.

The algorithm fails with probability O(1/n), taken over both
the choice of T and P, and its internal randomness.

This is a super-polynomial speedup for large m.

Pattern matching

Classically, one can solve the average-case problem in time
Õ(n/m +

√
n), and this is optimal.

But in the quantum setting, we have the following result:

Theorem (modulo minor technicalities)
Let T : [n] → Σ, P : [m] → Σ be picked as on the previous slide.
Then there is a quantum algorithm which runs in time

Õ(
√

n/m 2O(
√

log m))

and determines whether P matches T. If P does match T, the
algorithm also outputs the position at which the match occurs.
The algorithm fails with probability O(1/n), taken over both
the choice of T and P, and its internal randomness.

This is a super-polynomial speedup for large m.

Pattern matching

Classically, one can solve the average-case problem in time
Õ(n/m +

√
n), and this is optimal.

But in the quantum setting, we have the following result:

Theorem (modulo minor technicalities)
Let T : [n] → Σ, P : [m] → Σ be picked as on the previous slide.
Then there is a quantum algorithm which runs in time

Õ(
√

n/m 2O(
√

log m))

and determines whether P matches T. If P does match T, the
algorithm also outputs the position at which the match occurs.
The algorithm fails with probability O(1/n), taken over both
the choice of T and P, and its internal randomness.

This is a super-polynomial speedup for large m.

Pattern matching (d-dimensional)

Classically, one can solve the average-case problem in time
Õ((n/m)d + nd/2), and this is optimal.

But in the quantum setting, we have the following result:

Theorem (modulo minor technicalities)
Let T : [n]d → Σ, P : [m]d → Σ be picked as on the previous
slide. Then there is a quantum algorithm which runs in time

Õ((n/m)d/2 2O(d3/2
√

log m))

and determines whether P matches T. If P does match T, the
algorithm also outputs the position at which the match occurs.
The algorithm fails with probability O(1/nd), taken over both
the choice of T and P, and its internal randomness.

This is a super-polynomial speedup for large m.

The dihedral hidden subgroup problem

The main quantum ingredient in the algorithm is an algorithm
for the dihedral hidden subgroup problem (aka finding
hidden shifts over ZN):

Given two injective functions f , g : ZN → X such that
g(x) = f (x + s) for some s ∈ ZN, determine s.

The best known quantum algorithm for the dihedral HSP
uses 2O(

√
log N) = o(Nε) queries [Kuperberg ’05].

Classically, there is a lower bound of Ω(
√

N) queries.

The dihedral hidden subgroup problem

The main quantum ingredient in the algorithm is an algorithm
for the dihedral hidden subgroup problem (aka finding
hidden shifts over ZN):

Given two injective functions f , g : ZN → X such that
g(x) = f (x + s) for some s ∈ ZN, determine s.

The best known quantum algorithm for the dihedral HSP
uses 2O(

√
log N) = o(Nε) queries [Kuperberg ’05].

Classically, there is a lower bound of Ω(
√

N) queries.

From the dihedral HSP to pattern matching

Can we treat f and g as text and pattern, and use the dihedral
HSP to solve the general pattern matching problem?

The dihedral HSP algorithm requires the pattern and text to
be. . .

injective
the same length
1-dimensional

Also, a different notion of shifts is used (modulo N).

Can we relax these assumptions?

From the dihedral HSP to pattern matching

Can we treat f and g as text and pattern, and use the dihedral
HSP to solve the general pattern matching problem?

The dihedral HSP algorithm requires the pattern and text to
be. . .

injective
the same length
1-dimensional

Also, a different notion of shifts is used (modulo N).

Can we relax these assumptions?

From the dihedral HSP to pattern matching

Can we treat f and g as text and pattern, and use the dihedral
HSP to solve the general pattern matching problem?

The dihedral HSP algorithm requires the pattern and text to
be. . .

injective
the same length
1-dimensional

Also, a different notion of shifts is used (modulo N).

Can we relax these assumptions?

From the dihedral HSP to pattern matching
First, we make the pattern and text injective by concatenating
characters (an idea used previously in some different contexts
[Knuth ’77, Gharibi ’13]):

Q U A N T U M QU UA AN NT TU UM

A N T AN NT

Concatenation preserves the property of the pattern
matching the text.
If we produce a new alphabet whose symbols are strings
of length k, a query to the new string can be simulated by
k queries to the original string.
For most random strings, it suffices to take k = O(log n).

From the dihedral HSP to pattern matching
First, we make the pattern and text injective by concatenating
characters (an idea used previously in some different contexts
[Knuth ’77, Gharibi ’13]):

Q U A N T U M QU UA AN NT TU UM

A N T AN NT

Concatenation preserves the property of the pattern
matching the text.

If we produce a new alphabet whose symbols are strings
of length k, a query to the new string can be simulated by
k queries to the original string.
For most random strings, it suffices to take k = O(log n).

From the dihedral HSP to pattern matching
First, we make the pattern and text injective by concatenating
characters (an idea used previously in some different contexts
[Knuth ’77, Gharibi ’13]):

Q U A N T U M QU UA AN NT TU UM

A N T AN NT

Concatenation preserves the property of the pattern
matching the text.
If we produce a new alphabet whose symbols are strings
of length k, a query to the new string can be simulated by
k queries to the original string.

For most random strings, it suffices to take k = O(log n).

From the dihedral HSP to pattern matching
First, we make the pattern and text injective by concatenating
characters (an idea used previously in some different contexts
[Knuth ’77, Gharibi ’13]):

Q U A N T U M QU UA AN NT TU UM

A N T AN NT

Concatenation preserves the property of the pattern
matching the text.
If we produce a new alphabet whose symbols are strings
of length k, a query to the new string can be simulated by
k queries to the original string.
For most random strings, it suffices to take k = O(log n).

From the dihedral HSP to pattern matching

Second, we apply the dihedral HSP algorithm to the (now
injective) pattern and text, at a randomly chosen offset.

Claim
If the pattern is contained in the text, and our guess for the
start of the pattern is correct to within distance m 2−O(

√
log m),

the dihedral HSP algorithm outputs the correct shift with high
probability.

From the dihedral HSP to pattern matching

Second, we apply the dihedral HSP algorithm to the (now
injective) pattern and text, at a randomly chosen offset.

Claim
If the pattern is contained in the text, and our guess for the
start of the pattern is correct to within distance m 2−O(

√
log m),

the dihedral HSP algorithm outputs the correct shift with high
probability.

From the dihedral HSP to pattern matching

Second, we apply the dihedral HSP algorithm to the (now
injective) pattern and text, at a randomly chosen offset.

Claim
If the pattern is contained in the text, and our guess for the
start of the pattern is correct to within distance m 2−O(

√
log m),

the dihedral HSP algorithm outputs the correct shift with high
probability.

Completing the argument (d = 1)

The probability of our guess being in this “good” range is

p = Ω(m 2−O(
√

log m)/n).

Using a variant of amplitude amplification which can
cope with a bounded-error verifier [Høyer et al. ’03], we can
find a “good” position of this kind using

O(1/
√

p) = O(
√

n/m 2O(
√

log m))

queries.

The time complexity is the same up to log factors.

Completing the argument (d = 1)

The probability of our guess being in this “good” range is

p = Ω(m 2−O(
√

log m)/n).

Using a variant of amplitude amplification which can
cope with a bounded-error verifier [Høyer et al. ’03], we can
find a “good” position of this kind using

O(1/
√

p) = O(
√

n/m 2O(
√

log m))

queries.

The time complexity is the same up to log factors.

Completing the argument (d = 1)

The probability of our guess being in this “good” range is

p = Ω(m 2−O(
√

log m)/n).

Using a variant of amplitude amplification which can
cope with a bounded-error verifier [Høyer et al. ’03], we can
find a “good” position of this kind using

O(1/
√

p) = O(
√

n/m 2O(
√

log m))

queries.

The time complexity is the same up to log factors.

Dealing with errors

Note that the dihedral HSP algorithm might incorrectly claim
a match if the pattern does not match the text, but almost
matches at some offset:

We deal with this by checking any claimed match using
Grover’s algorithm.

This gives us an O(1/
√
γ) term in the runtime, where γ is

the minimal fraction of positions where a non-matching
pattern differs from the text.
For most random patterns and texts, γ = Ω(1).

Dealing with errors

Note that the dihedral HSP algorithm might incorrectly claim
a match if the pattern does not match the text, but almost
matches at some offset:

We deal with this by checking any claimed match using
Grover’s algorithm.

This gives us an O(1/
√
γ) term in the runtime, where γ is

the minimal fraction of positions where a non-matching
pattern differs from the text.
For most random patterns and texts, γ = Ω(1).

Dealing with errors

Note that the dihedral HSP algorithm might incorrectly claim
a match if the pattern does not match the text, but almost
matches at some offset:

We deal with this by checking any claimed match using
Grover’s algorithm.

This gives us an O(1/
√
γ) term in the runtime, where γ is

the minimal fraction of positions where a non-matching
pattern differs from the text.

For most random patterns and texts, γ = Ω(1).

Dealing with errors

Note that the dihedral HSP algorithm might incorrectly claim
a match if the pattern does not match the text, but almost
matches at some offset:

We deal with this by checking any claimed match using
Grover’s algorithm.

This gives us an O(1/
√
γ) term in the runtime, where γ is

the minimal fraction of positions where a non-matching
pattern differs from the text.
For most random patterns and texts, γ = Ω(1).

Higher dimensions

The dihedral HSP algorithm has allowed us to solve the case
d = 1. Can we generalise this to higher d?

Now a hidden shift s becomes a d-tuple (s1, . . . , sd).

When the
input size is a power of 2, we have:

Theorem
Let f , g : Zd

2n → X be injective functions such that g(x) = f (x+ s)
for all x ∈ Zd

2n . There is a quantum algorithm which outputs s
with bounded error using O(n21.781...

√
dn) queries.

Higher dimensions

The dihedral HSP algorithm has allowed us to solve the case
d = 1. Can we generalise this to higher d?

Now a hidden shift s becomes a d-tuple (s1, . . . , sd). When the
input size is a power of 2, we have:

Theorem
Let f , g : Zd

2n → X be injective functions such that g(x) = f (x+ s)
for all x ∈ Zd

2n . There is a quantum algorithm which outputs s
with bounded error using O(n21.781...

√
dn) queries.

Higher dimensions

The plan is to generalise an idea from [Kuperberg ’05]:

1 Generate a large pool of states

|ψr〉 =
1√
2
(|0〉+ωrs|1〉) ,

where ω := eπi/2n−1
, for random r ∈ Z2n (can be done by

querying f and g in superposition and using the QFT).

2 Attempt to produce the state

|ψ2n−1〉 =
1√
2
(|0〉+ (−1)s|1〉) ,

from which the low-order bit sn can be determined.

Once we know sn, we can apply this idea to new functions f ′,
g ′ to learn the other bits of s.

Higher dimensions

The plan is to generalise an idea from [Kuperberg ’05]:

1 Generate a large pool of states

|ψr〉 =
1√
2
(|0〉+ωrs|1〉) ,

where ω := eπi/2n−1
, for random r ∈ Z2n (can be done by

querying f and g in superposition and using the QFT).

2 Attempt to produce the state

|ψ2n−1〉 =
1√
2
(|0〉+ (−1)s|1〉) ,

from which the low-order bit sn can be determined.

Once we know sn, we can apply this idea to new functions f ′,
g ′ to learn the other bits of s.

Higher dimensions

The plan is to generalise an idea from [Kuperberg ’05]:

1 Generate a large pool of states

|ψr〉 =
1√
2
(|0〉+ωrs|1〉) ,

where ω := eπi/2n−1
, for random r ∈ Z2n (can be done by

querying f and g in superposition and using the QFT).

2 Attempt to produce the state

|ψ2n−1〉 =
1√
2
(|0〉+ (−1)s|1〉) ,

from which the low-order bit sn can be determined.

Once we know sn, we can apply this idea to new functions f ′,
g ′ to learn the other bits of s.

Higher dimensions

The plan is to generalise an idea from [Kuperberg ’05]:

1 Generate a large pool of states

|ψr〉 =
1√
2
(|0〉+ωrs|1〉) ,

where ω := eπi/2n−1
, for random r ∈ Z2n (can be done by

querying f and g in superposition and using the QFT).

2 Attempt to produce the state

|ψ2n−1〉 =
1√
2
(|0〉+ (−1)s|1〉) ,

from which the low-order bit sn can be determined.

Once we know sn, we can apply this idea to new functions f ′,
g ′ to learn the other bits of s.

Producing better states

Step 2 uses a combination operation:

(|ψr〉, |ψt〉) 7→

{
|ψr+t〉 (bad)
|ψr−t〉 (good)

with equal probability of each.

Split the n − 1 low-order bits into equal-sized blocks of O(
√

n)
bits each:

If r and t’s low-order bits were equal in some block, in the
good case (r − t)’s bits will be zero in that block.
In the bad case, we discard the output state |ψr+t〉.
If we start with a pool of 2O(

√
n) states |ψr〉, for each block

there are many states whose bits are equal, so we have a
good chance of producing |ψ2n−1〉 at the end.

Everything turns out to go through for d > 1. . .

Producing better states

Step 2 uses a combination operation:

(|ψr〉, |ψt〉) 7→

{
|ψr+t〉 (bad)
|ψr−t〉 (good)

with equal probability of each.

Split the n − 1 low-order bits into equal-sized blocks of O(
√

n)
bits each:

If r and t’s low-order bits were equal in some block, in the
good case (r − t)’s bits will be zero in that block.

In the bad case, we discard the output state |ψr+t〉.
If we start with a pool of 2O(

√
n) states |ψr〉, for each block

there are many states whose bits are equal, so we have a
good chance of producing |ψ2n−1〉 at the end.

Everything turns out to go through for d > 1. . .

Producing better states

Step 2 uses a combination operation:

(|ψr〉, |ψt〉) 7→

{
|ψr+t〉 (bad)
|ψr−t〉 (good)

with equal probability of each.

Split the n − 1 low-order bits into equal-sized blocks of O(
√

n)
bits each:

If r and t’s low-order bits were equal in some block, in the
good case (r − t)’s bits will be zero in that block.
In the bad case, we discard the output state |ψr+t〉.

If we start with a pool of 2O(
√

n) states |ψr〉, for each block
there are many states whose bits are equal, so we have a
good chance of producing |ψ2n−1〉 at the end.

Everything turns out to go through for d > 1. . .

Producing better states

Step 2 uses a combination operation:

(|ψr〉, |ψt〉) 7→

{
|ψr+t〉 (bad)
|ψr−t〉 (good)

with equal probability of each.

Split the n − 1 low-order bits into equal-sized blocks of O(
√

n)
bits each:

If r and t’s low-order bits were equal in some block, in the
good case (r − t)’s bits will be zero in that block.
In the bad case, we discard the output state |ψr+t〉.
If we start with a pool of 2O(

√
n) states |ψr〉, for each block

there are many states whose bits are equal, so we have a
good chance of producing |ψ2n−1〉 at the end.

Everything turns out to go through for d > 1. . .

Producing better states

Step 2 uses a combination operation:

(|ψr〉, |ψt〉) 7→

{
|ψr+t〉 (bad)
|ψr−t〉 (good)

with equal probability of each.

Split the n − 1 low-order bits into equal-sized blocks of O(
√

n)
bits each:

If r and t’s low-order bits were equal in some block, in the
good case (r − t)’s bits will be zero in that block.
In the bad case, we discard the output state |ψr+t〉.
If we start with a pool of 2O(

√
n) states |ψr〉, for each block

there are many states whose bits are equal, so we have a
good chance of producing |ψ2n−1〉 at the end.

Everything turns out to go through for d > 1. . .

Generalising this idea

1 Now s ∈ Zd
2n and the pool of states is of the form

|ψr〉 =
1√
2
(|0〉+ωr·s|1〉) ,

for random r ∈ Zd
2n (produced using the QFT over Zd

2n).

2 The combination operation works the same way as before.
3 We end up producing states |ψr〉 for random r ∈ {0, 2n−1}d,

from which the d low-order bits of s can be found.

We can improve the runtime of the algorithm of [Kuperberg ’05]:

Adjusting the block size as the algorithm progresses
Reusing “bad” states, rather than just discarding them

In the case d = 1 we get Õ(21.781...
√

n) rather than O(23
√

n),
matching a more complicated algorithm in [Kuperberg ’05].

Generalising this idea

1 Now s ∈ Zd
2n and the pool of states is of the form

|ψr〉 =
1√
2
(|0〉+ωr·s|1〉) ,

for random r ∈ Zd
2n (produced using the QFT over Zd

2n).
2 The combination operation works the same way as before.

3 We end up producing states |ψr〉 for random r ∈ {0, 2n−1}d,
from which the d low-order bits of s can be found.

We can improve the runtime of the algorithm of [Kuperberg ’05]:

Adjusting the block size as the algorithm progresses
Reusing “bad” states, rather than just discarding them

In the case d = 1 we get Õ(21.781...
√

n) rather than O(23
√

n),
matching a more complicated algorithm in [Kuperberg ’05].

Generalising this idea

1 Now s ∈ Zd
2n and the pool of states is of the form

|ψr〉 =
1√
2
(|0〉+ωr·s|1〉) ,

for random r ∈ Zd
2n (produced using the QFT over Zd

2n).
2 The combination operation works the same way as before.
3 We end up producing states |ψr〉 for random r ∈ {0, 2n−1}d,

from which the d low-order bits of s can be found.

We can improve the runtime of the algorithm of [Kuperberg ’05]:

Adjusting the block size as the algorithm progresses
Reusing “bad” states, rather than just discarding them

In the case d = 1 we get Õ(21.781...
√

n) rather than O(23
√

n),
matching a more complicated algorithm in [Kuperberg ’05].

Generalising this idea

1 Now s ∈ Zd
2n and the pool of states is of the form

|ψr〉 =
1√
2
(|0〉+ωr·s|1〉) ,

for random r ∈ Zd
2n (produced using the QFT over Zd

2n).
2 The combination operation works the same way as before.
3 We end up producing states |ψr〉 for random r ∈ {0, 2n−1}d,

from which the d low-order bits of s can be found.

We can improve the runtime of the algorithm of [Kuperberg ’05]:

Adjusting the block size as the algorithm progresses
Reusing “bad” states, rather than just discarding them

In the case d = 1 we get Õ(21.781...
√

n) rather than O(23
√

n),
matching a more complicated algorithm in [Kuperberg ’05].

Generalising this idea

1 Now s ∈ Zd
2n and the pool of states is of the form

|ψr〉 =
1√
2
(|0〉+ωr·s|1〉) ,

for random r ∈ Zd
2n (produced using the QFT over Zd

2n).
2 The combination operation works the same way as before.
3 We end up producing states |ψr〉 for random r ∈ {0, 2n−1}d,

from which the d low-order bits of s can be found.

We can improve the runtime of the algorithm of [Kuperberg ’05]:

Adjusting the block size as the algorithm progresses
Reusing “bad” states, rather than just discarding them

In the case d = 1 we get Õ(21.781...
√

n) rather than O(23
√

n),
matching a more complicated algorithm in [Kuperberg ’05].

Summary

There is a quantum algorithm for the d-dimensional
pattern matching problem which is super-polynomially
faster than classical for most (long) patterns and texts:

Õ((n/m)d/2 2O(d3/2
√

log m)) vs. Ω̃((n/m)d + nd/2).

For some inputs, the algorithm might fail (claim a match
when there is no match). . . but when it does, we at least
know that the pattern was close to matching at that offset.

Interesting open question: Can we find an improved quantum
algorithm for the dihedral HSP?

Summary

There is a quantum algorithm for the d-dimensional
pattern matching problem which is super-polynomially
faster than classical for most (long) patterns and texts:

Õ((n/m)d/2 2O(d3/2
√

log m)) vs. Ω̃((n/m)d + nd/2).

For some inputs, the algorithm might fail (claim a match
when there is no match). . . but when it does, we at least
know that the pattern was close to matching at that offset.

Interesting open question: Can we find an improved quantum
algorithm for the dihedral HSP?

Summary

There is a quantum algorithm for the d-dimensional
pattern matching problem which is super-polynomially
faster than classical for most (long) patterns and texts:

Õ((n/m)d/2 2O(d3/2
√

log m)) vs. Ω̃((n/m)d + nd/2).

For some inputs, the algorithm might fail (claim a match
when there is no match). . . but when it does, we at least
know that the pattern was close to matching at that offset.

Interesting open question: Can we find an improved quantum
algorithm for the dihedral HSP?

Thanks!

Further reading: arXiv:1408.1816

Advert
Two postdoc positions available at Bristol to work on the
theory of quantum computation.
Application deadline 25 January; start date flexible.
Talk to me if you’re interested!

